

Design and Analysis of Algorithms

Name of the Faculty: Mr.M.Raja Babu, Assistant Professor, Department of IT

Subject: Design and Analysis of Algorithm

Year & Semester: II -II

Topic: Quick Sort

Conventional Methods: Chalk & Talk

Teaching Methodology: Real-time case studies

In Design and Analysis of Algorithm subject, Quick Sort technique is an important topic. Many

have taught the topic using chalk and talk. Mr. M. Rajababu has taught the topic of quicksort

using real-time case studies. Students can understand the practical applications of quicksort

through real time case studies. If the topic explained without any case study, then student was

not able to understand how to use quicksort in real time. So, the innovative method of real time

case studies used for explaining real time applications of quicksort.

References:

1.https://www.javatpoint.com/quick-sort

2. https://www.tutorialspoint.com/data_structures_algorithms/quick_sort_algorithm.htm

3. https://www.youtube.com/watch?v=gtWw_8VvHjk

https://www.javatpoint.com/quick-sort
https://www.tutorialspoint.com/data_structures_algorithms/quick_sort_algorithm.htm
https://www.youtube.com/watch?v=gtWw_8VvHjk

Quick sort

It is used on the principle of divide-and-conquer. Quick sort is an algorithm of choice in

many situations as it is not difficult to implement. It is a good general purpose sort and it

consumes relatively fewer resources during execution.

Advantages

• It is in-place since it uses only a small auxiliary stack.

• It requires only n (log n) time to sort n items.

• It has an extremely short inner loop.

• This algorithm has been subjected to a thorough mathematical analysis, a very precise

statement can be made about performance issues.

Disadvantages

• It is recursive. Especially, if recursion is not available, the implementation is

extremely complicated.

• It requires quadratic (i.e., n2) time in the worst-case.

• It is fragile, i.e. a simple mistake in the implementation can go unnoticed and cause it

to perform badly.

Quick sort works by partitioning a given array A[p ... r] into two non-empty sub array A[p ...

q] and A[q+1 ... r] such that every key in A[p ... q] is less than or equal to every key in A[q+1

... r].

Then, the two sub-arrays are sorted by recursive calls to Quick sort. The exact position of the

partition depends on the given array and index q is computed as a part of the partitioning

procedure.

Algorithm: Quick-Sort (A, p, r)

if p < r then

 q Partition (A, p, r)

 Quick-Sort (A, p, q)

 Quick-Sort (A, q + r, r)

Note that to sort the entire array, the initial call should be Quick-Sort (A, 1, length[A])

As a first step, Quick Sort chooses one of the items in the array to be sorted as pivot. Then,

the array is partitioned on either side of the pivot. Elements that are less than or equal to pivot

will move towards the left, while the elements that are greater than or equal to pivot will

move towards the right.

Partitioning the Array

Partitioning procedure rearranges the sub-arrays in-place.

Function: Partition (A, p, r)

x ← A[p]

i ← p-1

j ← r+1

while TRUE do

 Repeat j ← j - 1

 until A[j] ≤ x

 Repeat i← i+1

 until A[i] ≥ x

 if i < j then

 exchange A[i] ↔ A[j]

 else

 return j

Analysis

The worst case complexity of Quick-Sort algorithm is O(n2). However using this technique,

in average cases generally we get the output in O(n log n) time.

Real-time application of Quicksort:

Commercial Computing is used in various government and private organizations for the

purpose of sorting various data like sorting files by name/date/price, sorting of students by

their roll no., sorting of account profile by given id, etc.

The sorting algorithm is used for information searching and as Quicksort is the fastest

algorithm so it is widely used as a better way of searching.

It is used everywhere where a stable sort is not needed.

Quicksort is a cache-friendly algorithm as it has a good locality of reference when used for

arrays.

It is tail -recursive and hence all the call optimization can be done.

It is an in-place sort that does not require any extra storage memory.

It is used in operational research and event-driven simulation.

Quick sort using real time case studies:

